

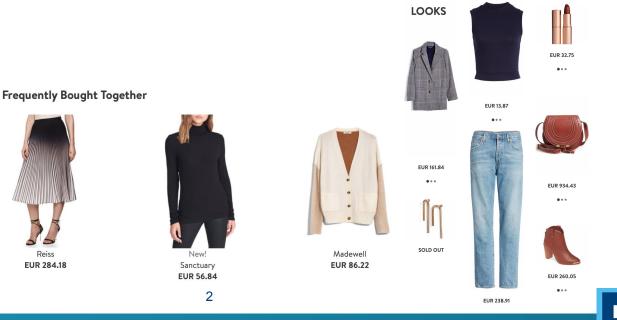
Attention-based Fusion for Outfit Recommendation

Katrien Laenen, Marie-Francine Moens

University: KU Leuven

Motivation

- Explosive growth of e-commerce content on the Web
- Recommendation systems are essential to overcome consumer overchoice
- Limited support for users looking for a full outfit



Problem definition

Outfit compatibility prediction

Outfit

completion

3

Challenges

- Item understanding
 - Capture important fine-grained product features in the item representation Ο
 - Effectively fuse the information in the product image and description Ο
 - → attention-based fusion
- Item matching
 - Compatibility is a complex relationship (e.g., not transitive) Ο

pre-owned christian louboutin confusalta T-strap platform peep toe pum

KU LEU

Overview

- Motivation
- Problem definition
- Challenges
- Methodology
 - Baseline model: Common space fusion
 - Our model: Attention-based fusion
- Datasets
- Experiments
- Results
- Conclusions

Methodology: Common space fusion

Baseline model

Common space fusion method of Vasileva et al. (2018)

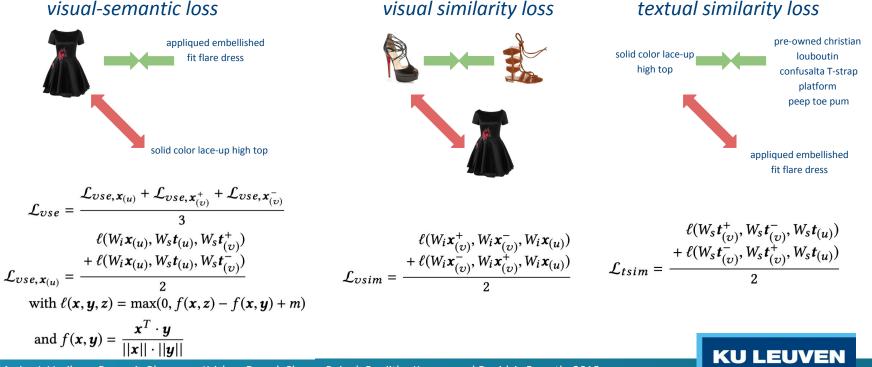
Input

A triplet of image embeddings $(\mathbf{x}_{(u)}, \mathbf{x}_{(v)}^+, \mathbf{x}_{(v)}^-)$ and a triplet of corresponding description embeddings $(\mathbf{t}_{(u)}, \mathbf{t}_{(v)}^+, \mathbf{t}_{(v)}^-)$

Mariya I. Vasileva, Bryan A. Plummer, Krishna Dusad, Shreya Rajpal, Ranjitha Kumar, and David A. Forsyth. 2018. Learning Type-Aware Embeddings for Fashion Compatibility. In *ECCV*.

Methodology: Common space fusion

Multimodal semantic space



Mariya I. Vasileva, Bryan A. Plummer, Krishna Dusad, Shreya Rajpal, Ranjitha Kumar, and David A. Forsyth. 2018. Learning Type-Aware Embeddings for Fashion Compatibility. In *ECCV*.

Methodology: Common space fusion

Type-specific compatibility spaces

compatibility loss

$$\mathcal{L}_{comp} = \ell(W_c^{(u,v)}W_i \mathbf{x}_{(u)}, W_c^{(u,v)}W_i \mathbf{x}_{(v)}^+, W_c^{(u,v)}W_i \mathbf{x}_{(v)}^-)$$

with $\ell(\mathbf{x}, \mathbf{y}, \mathbf{z}) = \max(0, f(\mathbf{x}, \mathbf{z}) - f(\mathbf{x}, \mathbf{y}) + m)$
and $f(\mathbf{x}, \mathbf{y}) = \frac{\mathbf{x}^T \cdot \mathbf{y}}{||\mathbf{x}|| \cdot ||\mathbf{y}||}$

Compatibility space for Dresses and Shoes:

KU LEUVEN

Training

complete loss

 $\mathcal{L} = \mathcal{L}_{comp} + \lambda_1 \mathcal{L}_{vsim} + \lambda_2 \mathcal{L}_{tsim} + \lambda_3 \mathcal{L}_{vse}$

Mariya I. Vasileva, Bryan A. Plummer, Krishna Dusad, Shreya Rajpal, Ranjitha Kumar, and David A. Forsyth. 2018. Learning Type-Aware Embeddings for Fashion Compatibility. In *ECCV*.

8

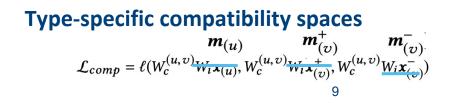
Methodology: Attention-based fusion

Input

A triplet of **region-level** image feature $(x_{1:N(u)}, x_{1:N(v)}^+, x_{1:N(v)}^-)$ and a triplet of corresponding description-level features $(t_{(u)}, t_{(v)}^+, t_{(v)}^-)$ **or** word-level features $(t_{1:M(u)}, t_{1:M(v)}^+, t_{1:M(v)}^-)$ (depends on attention mechanism)

Multimodal semantic space

Average region-level and word-level representations, i.e., $\mathbf{x}_{(u)} = \frac{1}{N} \sum_{i=1}^{N} \mathbf{x}_{i(u)}$, to compute losses Use **attention** to fuse the visual and textual information to obtain a triplet of multimodal item representations $(\mathbf{m}_{(u)}, \mathbf{m}_{(v)}^+, \mathbf{m}_{(v)}^-)$



Methodology: Visual dot product attention

Input

Region-level image features $X \in \mathbb{R}^{N \times d_g}$ Description-level text feature $t \in \mathbb{R}^{d_g}$

Visual attention weights and context vector

$$a_{i} = \tanh(\mathbf{x}_{i}) \cdot \tanh(t)$$
$$\mathbf{c} = \sum_{i=1}^{N} \alpha_{i} \mathbf{x}_{i}, \text{ with } \alpha_{i} = \operatorname{softmax}([a_{1}, a_{2}, ..., a_{N}])_{i}$$

Multimodal item representation

[**c**;**t**]

Methodology: Stacked visual attention

Input

Region-level image features $X \in \mathbb{R}^{N \times d_g}$ Description-level text feature $t \in \mathbb{R}^{d_g}$

Visual attention weights and context vector

Computed in R attention hops

$$\boldsymbol{a}^{(r)} = \boldsymbol{w}_p^{(r)} \tanh(W_v^{(r)} X^T \oplus (W_t^{(r)} \boldsymbol{q}^{(r-1)} + \boldsymbol{b}_s^{(r)}))$$
$$\boldsymbol{c}^{(r)} = \boldsymbol{\alpha}^{(r)} X, \text{ with } \boldsymbol{\alpha}^{(r)} = \operatorname{softmax}(\boldsymbol{a}^{(r)})$$

 $q^{(r)} = q^{(r-1)} + c^{(r)}$

Multimodal item representation

 $[q^{(R)};t]$

11

Zichao Yang, Xiaodong He, Jianfeng Gao, Li Deng, and Alexander J. Smola. 2016. Stacked Attention Networks for Image Question Answering. In *CVPR*. IEEE Computer Society, 21–29.

Methodology: Co-attention

Input

Region-level image features $X \in \mathbb{R}^{N \times d_g}$ Word-level text features $Y \in \mathbb{R}^{M \times d_g}$

Textual attention

Visual attention

$$a^{t} = \text{Convolution1D}_{t,2}(\text{ReLU}(\text{Convolution1D}_{t,1}(Y))) \qquad a^{v,(r)} = \text{Convolution1D}_{v,2}^{(r)}(\text{ReLU}(\text{Convolution1D}_{v,1}^{(r)}(M))) \\ in=d_{g}, out=1, k=1 \qquad in=2d_{g}, out=d_{g}, k=1 \\ c^{t} = \boldsymbol{\alpha}^{t} Y, \text{ with } \boldsymbol{\alpha}^{t} = \text{softmax}(\boldsymbol{a}^{t}) \qquad c^{v,(r)} = \boldsymbol{\alpha}^{v,(r)}M, \text{ with } \boldsymbol{\alpha}^{v,(r)} = \text{softmax}(\boldsymbol{a}^{v,(r)})$$

$$M = MFB(X, c^{t}) \qquad c^{\upsilon} = W_{f}[c^{\upsilon,(1)}; c^{\upsilon,(2)}; ...; c^{\upsilon,(R)}]$$

Multimodal item representation

 $MFB(\boldsymbol{c}^{\boldsymbol{v}}, \boldsymbol{c}^{t})$

12

Datasets

Polyvore68K-ND

- 68,306 outfits
 (78% training, 7% validation, 15% testing)
- 365,054 items

Polyvore68K-D

- 35,140 outfits
 (48% training, 9% validation, 43% testing)
- 175,485 items

Polyvore21K

• 20,925 outfits

(81% training, 6% validation, 13% testing)

	Item Types			
Polyvore68K	Accessories, All body, Bags, Bottoms, Hats,			
	Jewellery, Outerwear, Scarves, Shoes, Sun-			
	glasses, Tops			
Polyvore21K	Accessories, Activewear, Baby, Bags and Wallets,			
	Belts, Boys, Cardigans and Vests, Clothing, Cos-			
	tumes, Cover-ups, Dresses, Eyewear, Girls, Gloves,			
	Hats, Hosiery and Socks, Jeans, Jewellery, Jumpsuits,			
	Juniors, Kids, Maternity, Outerwear, Pants, Scarves,			
	Shoes, Shorts, Skirts, Sleepwear, Suits, Sweaters and			
	Hoodies, Swimwear, Ties, Tops, Underwear, Watches,			
	Wedding Dresses			

Table 2: Item types kept in the Polyvore68K andPolyvore21K datasets.

Experimental setup

Experiments and evaluation

• Fashion compatibility (FC) task: Given a set of items, compute the outfit compatibility score as the average compatibility score across all item pairs in the set

• *Fill-in-the-blank (FITB) task:* Given an incomplete set of items and 4 candidate items, find the most compatible candidate item as the one which has the highest total compatibility score with the items in the set

KU

Training details

- Output of the 7x7x256 res4b_relu layer of ResNet18 to represent images
- Bidirectional LSTM to represent descriptions and words

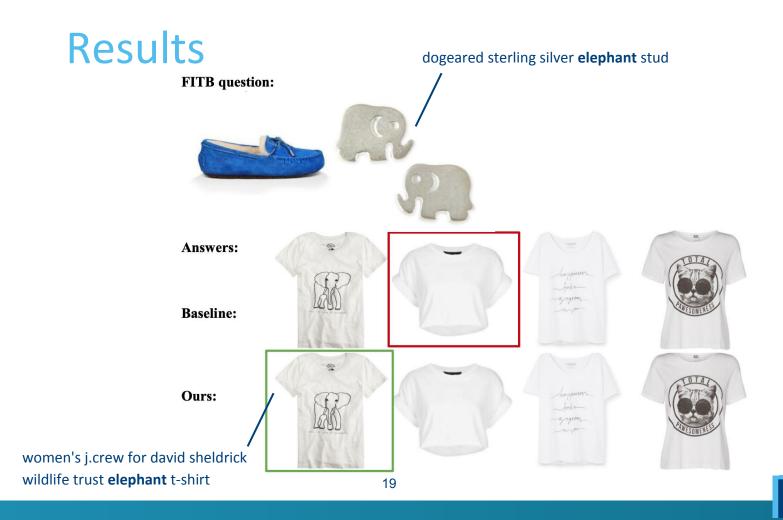
	Polyvore68K-ND		Polyvore68K-D		Polyvore21K	
	FC	FITB	FC	FITB	FC	FITB
Common space fusion						
baseline [11]	85.62	56.55	85.07	56.91	86.28	58.35
Attention-based fusion						
visual dot product attention	89.43	61.55	86.85	60.12	88.59	63.11
stacked visual attention	89.68	61.92	87.25	60.48	88.89	62.52
co-attention	89.58	61.20	86.25	59.00	85.04	58.20

Table 1: Results on the fashion compatibility and fill-in-theblank tasks for the Polyvore68K dataset versions and the Polyvore21K dataset.

FITB question:

FITB question:

FITB question:



Conclusions and future work

- Attention on region-level image features and word-level text features allows to bring certain product features to the forefront in the multimodal item representations, which benefits the outfit recommendation task
- Improve state-of-the-art results on an outfit compatibility prediction task and an outfit completion task on three datasets
- Investigate neural architectures that still better recognise fine-grained fashion attributes in images
- Design novel co-attention mechanisms

