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Motivation
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● Explosive growth of e-commerce content on the Web

● Recommendation systems are essential to overcome consumer overchoice

● Limited support for users looking for a full outfit



Problem definition
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Challenges
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● Item understanding

○ Capture important fine-grained product features in the item representation

○ Effectively fuse the information in the product image and description

   attention-based fusion

● Item matching

○ Compatibility is a complex relationship (e.g., not transitive)

pre-owned christian louboutin confusalta T-strap platform peep toe pumappliqued embellished fit flare dress



Overview

5

● Motivation

● Problem definition

● Challenges

● Methodology
○ Baseline model: Common space fusion

○ Our model: Attention-based fusion

● Datasets

● Experiments

● Results

● Conclusions



Methodology: Common space fusion
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Baseline model

Common space fusion method of Vasileva et al. (2018)

Input
A triplet of image embeddings  and a triplet of

 corresponding description embeddings

Example:
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Mariya I. Vasileva, Bryan A. Plummer, Krishna Dusad, Shreya Rajpal, Ranjitha Kumar, and David A. Forsyth. 2018.  
Learning Type-Aware Embeddings for Fashion Compatibility. In ECCV.
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Methodology: Common space fusion
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Multimodal semantic space

visual-semantic loss visual similarity loss    textual similarity loss

Mariya I. Vasileva, Bryan A. Plummer, Krishna Dusad, Shreya Rajpal, Ranjitha Kumar, and David A. Forsyth. 2018.  
Learning Type-Aware Embeddings for Fashion Compatibility. In ECCV.
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Methodology: Common space fusion
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Type-specific compatibility spaces

compatibility loss

Training
complete loss

Mariya I. Vasileva, Bryan A. Plummer, Krishna Dusad, Shreya Rajpal, Ranjitha Kumar, and David A. Forsyth. 2018.  
Learning Type-Aware Embeddings for Fashion Compatibility. In ECCV.

Compatibility space for Dresses and Shoes:



Input
A triplet of region-level image features             and a triplet of corresponding

 description-level features   or word-level features

(depends on attention mechanism)

Multimodal semantic space

Average region-level and word-level representations, i.e.,       , to compute losses

Use attention to fuse the visual and textual information to obtain a triplet of multimodal item

representations 

Type-specific compatibility spaces

Methodology: Attention-based fusion
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Input
Region-level image features

Description-level text feature

Visual attention weights and context vector

Multimodal item representation

Methodology: Visual dot product attention
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Input
Region-level image features

Description-level text feature

Visual attention weights and context vector

Computed in R attention hops

Multimodal item representation

Methodology: Stacked visual attention
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Zichao Yang, Xiaodong He, Jianfeng Gao, Li Deng, and Alexander J. Smola. 2016. Stacked Attention 

Networks for Image Question Answering. In CVPR. IEEE Computer Society, 21–29.



Input
Region-level image features

Word-level text features

Textual attention    Visual attention

Multimodal item representation
   

Methodology: Co-attention
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Zhou Yu, Jun Yu, Jianping Fan, and Dacheng Tao. 2017. Multi-modal Factorized Bilinear Pooling with Co-Attention 

Learning for Visual Question Answering. In ICCV, 1839–1848.



Datasets
Polyvore68K-ND
● 68,306 outfits

          (78% training, 7% validation, 15% testing)

● 365,054 items

Polyvore68K-D
● 35,140 outfits

(48% training, 9% validation, 43% testing)

● 175,485 items

Polyvore21K
● 20,925 outfits

(81% training, 6% validation, 13% testing)
           



Experiments and evaluation
● Fashion compatibility (FC) task: Given a set of items, compute the outfit compatibility score as the average 

compatibility score across all item pairs in the set

● Fill-in-the-blank (FITB) task: Given an incomplete set of items and 4 candidate items, find the most compatible 

candidate item as the one which has the highest total compatibility score with the items in the set

Training details
● Output of the 7x7x256 res4b_relu layer of ResNet18 to represent images

● Bidirectional LSTM to represent descriptions and words

           

Experimental setup
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Results 
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women's j.crew for david sheldrick 

wildlife trust elephant t-shirt

dogeared sterling silver elephant stud



Conclusions and future work

● Attention on region-level image features and word-level text features allows to 
bring certain product features to the forefront in the multimodal item 
representations, which benefits the outfit recommendation task

● Improve state-of-the-art results on an outfit compatibility prediction task and an 
outfit completion task on three datasets

● Investigate neural architectures that still better recognise fine-grained fashion 
attributes in images

● Design novel co-attention mechanisms
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