

Assessing Fashion Recommendations: A Multifaceted Offline Evaluation Approach

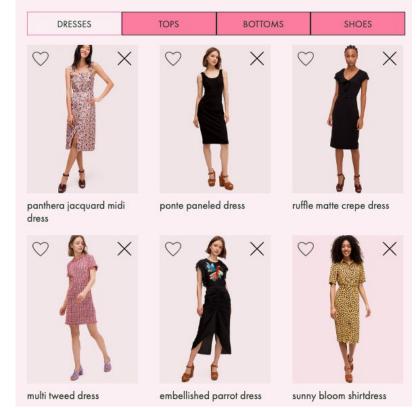
Jake Sherman, Chinmay Shukla, Rhonda Textor, Su Zhang, Amy A. Winecoff

About True Fit

- We provide footwear and apparel size and style recommendations
- Our clients range from large, multi-brand retailers (e.g., Macy's), to smaller, single-brand retailers (e.g., Kate Spade)
- Over 100M people have received a recommendation from True Fit

shopping true to you

we've curated this collection of styles just for you. it's powered by true fit's genome, which decodes your style, fit, and size from what you love to wear. and true fit gets smarter with your feedback. ok, got it!



Challenges of the fashion domain

- Different recommendations for different users (i.e., personalization) is a goal
- Accuracy alone is insufficient to measure offline performance
- Acute cold-start problem due to volume of "new" users
- Exceptional data sparsity

Objective

Developing a holistic offline evaluation approach that:

- Includes metrics to measure whether or not different users are getting different recommendations
- Performs evaluations for multiple user slices based on user interaction histories (i.e., new versus existing users) to measure cold-start performance

Measuring distinctness

Start by measuring the distinctness of a pair of users' top-k recommendations:

$$AD_{k,i,j} = |L_{k,i} \triangle L_{k,j}| = |(L_{k,i} - L_{k,j}) \cup (L_{k,j} - L_{k,i})|$$

Then, take the average $AD_{k,i,j}$ across all possible pairs of users:

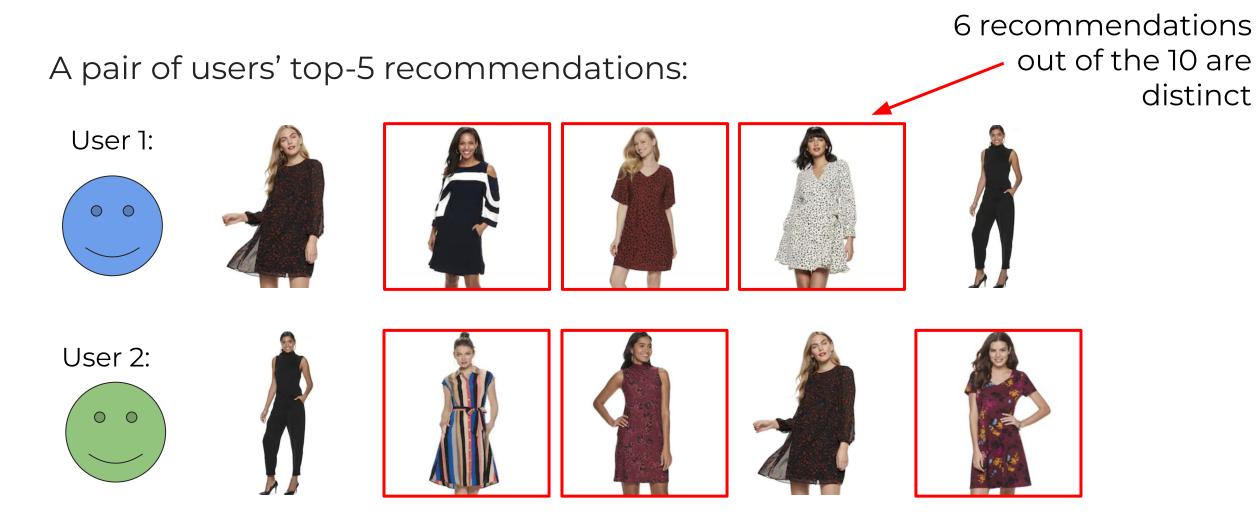
$$AD_k = \frac{1}{\frac{1}{2}(U^2 - U)} \cdot \sum_{i=1}^U \sum_{j=i+1}^U AD_{k,i,j}$$

This is the symmetric difference between the two sets of recommendations

Distinctness example for two users

A pair of users' top-5 recommendations:

Distinctness example for two users



Measuring popularity

Start by measuring the relative popularity of a user's top-k recommendations:

 $RP_{k,u}$

Quantity sold of user's top-k recommendations

Then, take the average of RP_{k.u} across all users:

$$RP_k = \frac{1}{U} \cdot \sum_{u=1}^{U} RP_{k,u}$$

Quantity sold of the k most popular items across all users

Objective

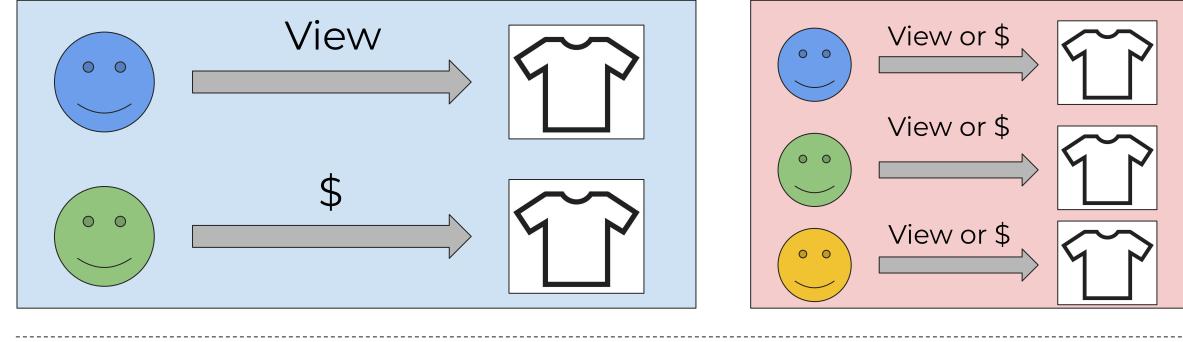
Developing a holistic offline evaluation approach that:

Includes metrics to measure whether or not different users are getting different recommendations

• Performs evaluations for multiple user slices based on user interaction histories (i.e., new versus existing users) to measure cold start performance

cold-start performance

Defining user slices based on user interactions in the training data



is a sale user

Objective

Developing a holistic offline evaluation approach that:

Includes metrics to measure whether or not different users are

getting different recommendations

Performs evaluations for multiple user slices based on user

interaction histories (i.e., new versus existing users) to measure

cold-start performance

Demonstrating the value of our approach

In order to demonstrate the effectiveness of our proposed offline evaluation approach, we will:

- Create recommendations using 3 different recommendation strategies, for 3 different retailers
- Use our evaluation approach to reveal the strengths and weaknesses of each recommendation strategy

Our data is extremely sparse and faces major cold-start challenges

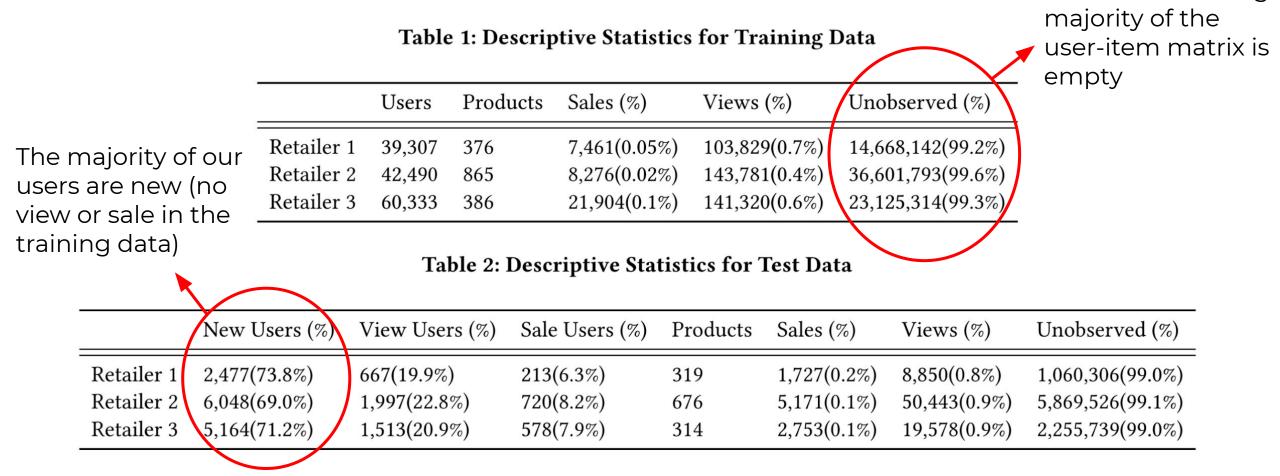
Table 1: Descriptive Statistics for Training Data

		Users	Products	Sales (%)	Views (%)	Unobserved (%)			
The majority of our users are new (no view or sale in the	Retailer 1 Retailer 2 Retailer 3	39,307 42,490 60,333	376 865 386	7,461(0.05%) 8,276(0.02%) 21,904(0.1%)	103,829(0.7%) 143,781(0.4%) 141,320(0.6%)	14,668,142(99.2%) 36,601,793(99.6%) 23,125,314(99.3%)			
training data)		Table 2: Descriptive Statistics for Test Data							

	New Users (%)	View Users (%)	Sale Users (%)	Products	Sales (%)	Views (%)	Unobserved (%)
Retailer 1	2,477(73.8%)	667(19.9%)	213(6.3%)	319	1,727(0.2%)	8,850(0.8%)	1,060,306(99.0%)
Retailer 2	6,048(69.0%)	1,997(22.8%)	720(8.2%)	676	5,171(0.1%)	50,443(0.9%)	5,869,526(99.1%)
Retailer 3	5,164(71.2%)	1,513(20.9%)	578(7.9%)	314	2,753(0.1%)	19,578(0.9%)	2,255,739(99.0%)

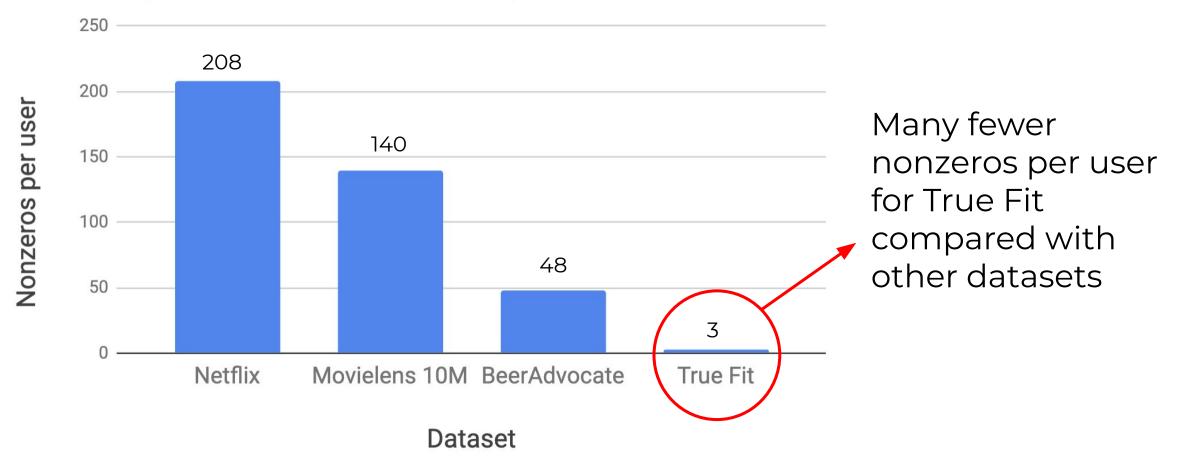
Our data is extremely sparse and faces major cold-start challenges

The overwhelming



Fashion data is exceptionally sparse

Nonzeros per user, other datasets compared with True Fit



How we setup our experiment

Recommendation strategies:

- 1. Most popular items (MP)
- 2. Collaborative filtering (CF)
- 3. Content-based modeling (CB)

Evaluation metrics:

- Standard metrics: normalized discounted cumulative gain at k (NDCG_k)
- Our metrics: average distinctness at k (AD_k), relative popularity at k (RP_k)

Recommending popular items maximizes accuracy...

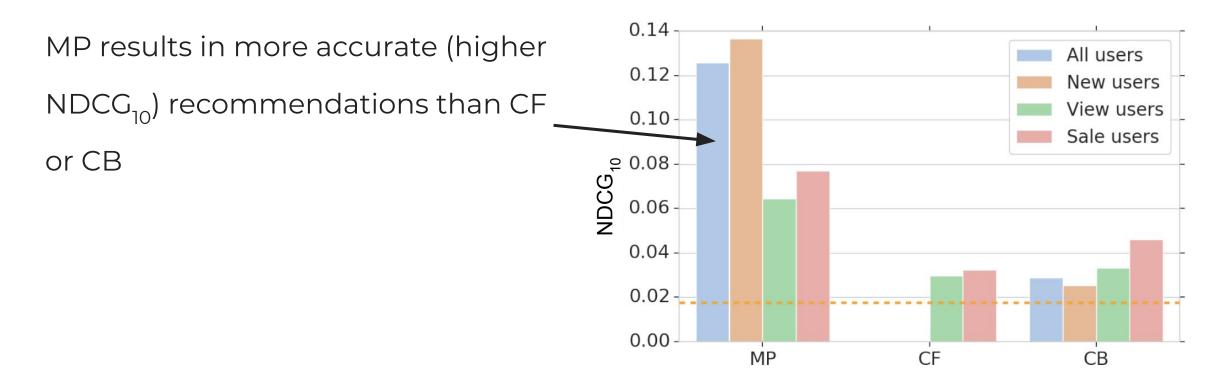


Figure 1: $NDCG_{10}$ for Retailer 1. The yellow dotted line corresponds to the $NDCG_{10}$ value for Retailer 1 that would result from a random ranking of the items.

Recommending popular items maximizes accuracy...

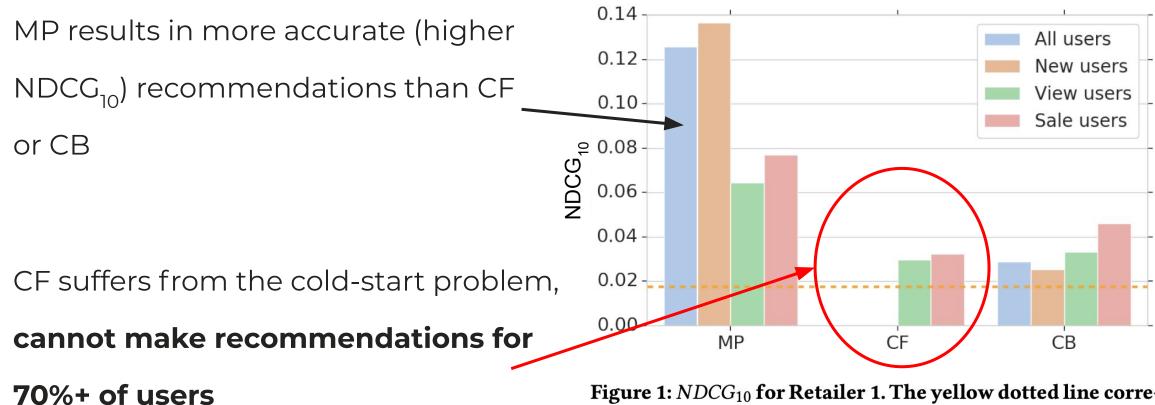


Figure 1: $NDCG_{10}$ for Retailer 1. The yellow dotted line corresponds to the $NDCG_{10}$ value for Retailer 1 that would result from a random ranking of the items.

...but results in recommendations that are not distinct...

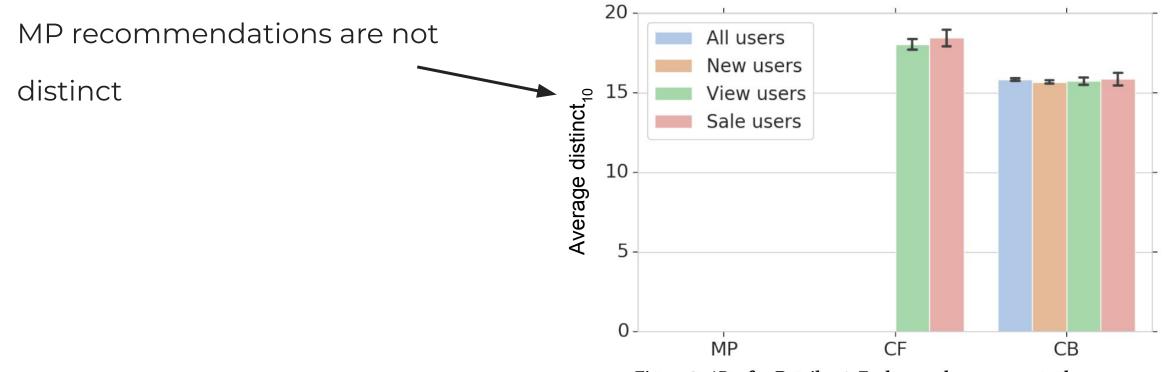
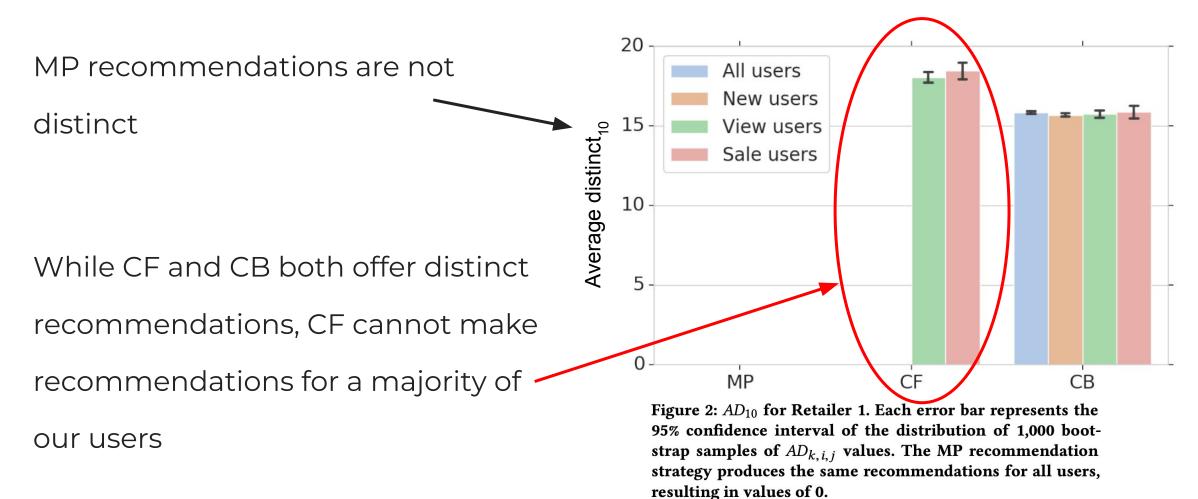


Figure 2: AD_{10} for Retailer 1. Each error bar represents the 95% confidence interval of the distribution of 1,000 bootstrap samples of $AD_{k,i,j}$ values. The MP recommendation strategy produces the same recommendations for all users, resulting in values of 0.

Τ

...but results in recommendations that are not distinct...



...and are completely popularity-biased

MP recommendations are

completely popularity biased

While CF and CB each offer less

popularity-based recommendations

than MB, CF, once again, suffers from

the cold-start problem

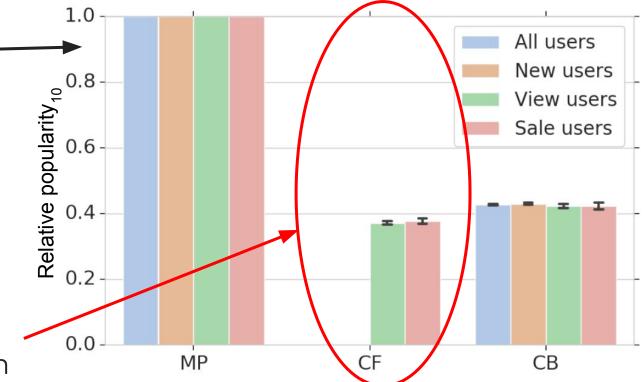


Figure 3: RP_{10} for Retailer 1. Each error bar represents the 95% confidence interval of the distribution of 1,000 bootstrap samples of $RP_{k,u}$ values. By only recommending the most popular items, the MP recommendation strategy always produces values of 1.

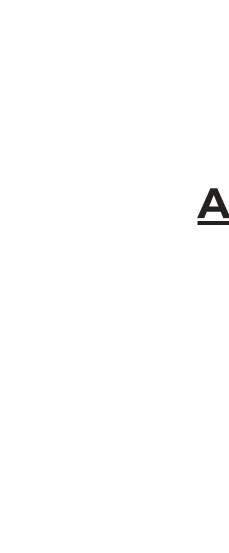
Conclusions

In order to perform a comprehensive offline evaluation of a fashion recommender system, one must do the following:

- Use metrics to measure whether or not different users are getting different recommendations, in addition to accuracy
- Perform evaluations for multiple user slices based on user interaction histories (new versus existing users)

Thank you

<u>Appendix</u>



Explaining retailer-specific results

- We suspect that differences in patterns of retailer results driven by retailer sales distributions (popularity)
- High NDCG₁₀ and RP_k of Retailer 2
- Retailer 2 being the exception where
 NDCG₁₀ and RP_k are higher for CF
 than CB

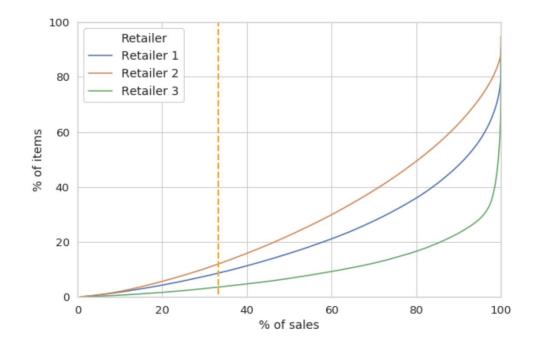


Figure 4: Sales distributions for our three retailers. Items are ordered by popularity, with the most popular items at the bottom. The set of popular items that make up a third of sales is known as the short-head, while the set of remaining items make up the long-tail [4]. The yellow dashed line provides the demarcation between the items in the short-head and long-tail.